Can cemented femoral stems be used during revision total hip arthroplasty?

Citak M, Aras E, Devito F, Hoveidaei A, Hubble M, Nikolaev N, Pirahesh K, San-Ruiz P.

Response/Recommendation:

Cemented femoral stems can be used during revision total hip arthroplasty (THA), particularly in patients with capacious femoral canal, when the use of uncemented stem is not possible, and in older patients with shorter life expectancies.

Level of Evidence: Moderate

Rationale:

In this review, we analyzed the outcomes of six studies that included both cemented and uncemented stems for revision total hip arthroplasty (THA) (Table 1). The most frequently encountered complications leading to the need for re-revision were aseptic loosening, dislocations, periprosthetic fractures, and infections. A common effect model based on four studies indicated that the use of a cemented stem significantly increased the risk of aseptic loosening (risk ratio [95% CI]: 0.54 [0.41-0.71], p < 0.001). Additionally, another common effect model from six studies suggested that cemented stems elevated the risk of periprosthetic fractures (both intra- and post-operative) (risk ratio [95% CI]: 0.66 [0.44-1.00], p = 0.048). Conversely, a random effect model from six studies demonstrated that cemented stems might offer substantial protection against dislocations (risk ratio [95% CI]: 2.45 [1.20-4.98]). Our analysis of infection rates did not reveal any statistically significant advantage of one stem type over the other (risk ratio [95% CI]: 1.37 [0.96-1.96], p = 0.081).

The increasing number of revision hip arthroplasties is posing difficulties in the clinical setting, further compounded by the fact that the patients requiring these procedures are getting younger [1–4]. Younger patients typically have markedly superior bone stock and bone quality which makes them ideal candidates for the use of uncemented femoral stem [5]. Instead of the more traditional cemented femoral stems, uncemented designs are gaining popularity especially in patients without substantial loss of bone support [6]. Use of uncemented femoral stems in patients with sufficient metaphyseal support has been proposed to be superior in preserving bone stock for potential future revisions by allowing long-term biological fixation and having a more anatomic stress distribution pattern [7,8]. The ability to fine-tune soft tissue balancing, femoral anteversion, and offset with modular uncemented stems, simplifies the revision procedure and broadens the indications for their use [9].

The advantages of uncemented stems during revision THA are numerous [10]. However, concerns about the widespread adoption of uncemented stems originate from the increased early re-revision rates due to dislocations associated with subsidence and a higher risk of intraoperative periprosthetic fractures. These risks are exacerbated by stress shielding in presence of less bone stock, necessitating longer stems to facilitate diaphyseal anchorage [5,11]. Thus, cemented stems still appear to be a valid option particularly for patients with larger femoral bone defects [6,10,12]. Cemented revision stems, compared to uncemented ones, are traditionally associated with lower intraoperative periprosthetic fracture risk and reduced subsidence, resulting in lower early to midterm revision rates [6,10,12–14]. However, they appear to be prone to aseptic loosening in the long-term, increasing the revision rates, reaching the revision rates of uncemented stems [12,13]. Consequently, they are considered a better option for older patients with shorter life expectancies.

Despite numerous published articles on the topic, stem choice remains open for debate and often relies mostly on surgeon experience and familiarity. Available scientific evidence is limited by heterogeneity, with various implants, techniques and indications being adopted [15]. Registries provide a broad picture with large cohort sizes; however, they are prone to be limited in portraying differences in bone defect sizes and experiences of different centers. Hence, the reported data is often contradictory, making individualized choices challenging for the surgeons. A review of the literature considering standardized data, would help clarifying the advantages and disadvantages of each method, facilitating a more accurate choice of revision stems.

References

- [1] Sabah SA, Knight R, Nicolson PJA, Taylor A, Kendrick B, Alvand A, et al. Epidemiology of revision hip replacement surgery in the UK over the past 15 years-an analysis from the National Joint Registry. BMJ Open 2023;13. https://doi.org/10.1136/BMJOPEN-2023-072462.
- [2] Longo UG, Papalia R, Salvatore G, Tecce SM, Jedrzejczak A, Marcozzi M, et al. Epidemiology of revision hip replacement in Italy: a 15-year study. BMC Surg 2022;22. https://doi.org/10.1186/S12893-022-01785-8.
- [3] Schwartz AM, Farley KX, Guild GN, Bradbury TL. Projections and Epidemiology of Revision Hip and Knee Arthroplasty in the United States to 2030. J Arthroplasty 2020;35:S79–85. https://doi.org/10.1016/j.arth.2020.02.030.
- [4] Annette W-Dahl, Johan Kärrholm, Cecilia Rogmark, Jonatan Nåtman, Erik Bülow, Perna Ighani Arani, et al. The Swedish Arthroplasty Register Annual Report 2023 n.d. https://doi.org/https://doi.org/10.18158/JnKhp2Ru7.
- [5] Castagnini F, Pardo F, Lucchini S, Rotini M, Cavalieri B, Dalla Rosa M, et al. Cementless Primary Stems in Revision Hip Arthroplasty: A Narrative Review. J Clin Med 2024;13. https://doi.org/10.3390/jcm13020604.
- [6] Tyson Y, Hillman C, Majenburg N, Sköldenberg O, Rolfson O, Kärrholm J, et al. Uncemented or cemented stems in first-time revision total hip replacement? An observational study of 867 patients including assessment of femoral bone defect size. Acta Orthop 2021;92:143–50. https://doi.org/10.1080/17453674.2020.1846956.
- [7] Mauch M, Brecht H, Clauss M, Stoffel K. Use of Short Stems in Revision Total Hip Arthroplasty: A Retrospective Observational Study of 31 Patients. Medicina (Kaunas) 2023;59. https://doi.org/10.3390/medicina59101822.
- [8] Sahemey R, Ridha A, Stephens A, Farhan-Alanie MM, Kozdryk J, Riemer B, et al. Does size matter? Outcomes following revision total hip arthroplasty with long or primary stems: a systematic review and meta-analysis. Arthroplasty (London, England) 2024;6:4. https://doi.org/10.1186/s42836-023-00228-w.
- [9] Iorio R, Healy WL, Presutti AH. A prospective outcomes analysis of femoral component fixation in revision total hip arthroplasty. J Arthroplasty 2008;23:662–9. https://doi.org/10.1016/j.arth.2007.06.009.

- [10] Van Dooren B, Peters RM, Jutte PC, Stevens M, Schreurs BW, Zijlstra WP. Similar revision rate after cemented and cementless femoral revisions for periprosthetic femoral fractures in total hip arthroplasty: analysis of 1,879 revision hip arthroplasties in the Dutch Arthroplasty Register. Acta Orthop 2023;94:260–5. https://doi.org/10.2340/17453674.2023.13211.
- [11] Chatziagorou G, Lindahl H, Kärrholm J. Surgical treatment of Vancouver type B periprosthetic femoral fractures: patient characteristics and outcomes of 1381 fractures treated in Sweden between 2001 and 2011. Bone Joint J 2019;101-B:1447–58. https://doi.org/10.1302/0301-620X.101B11.BJJ-2019-0480.R2.
- [12] Tyson Y, Rolfson O, Kärrholm J, Hailer NP, Mohaddes M. Uncemented or cemented revision stems? Analysis of 2,296 first-time hip revision arthroplasties performed due to aseptic loosening, reported to the Swedish Hip Arthroplasty Register. Acta Orthop 2019;90:421–6. https://doi.org/10.1080/17453674.2019.1624336.
- [13] Weiss RJ, Stark A, Kärrholm J. A modular cementless stem vs. cemented long-stem prostheses in revision surgery of the hip: a population-based study from the Swedish Hip Arthroplasty Register. Acta Orthop 2011;82:136–42. https://doi.org/10.3109/17453674.2011.566145.
- [14] Mäkelä KT, Eskelinen A, Pulkkinen P, Paavolainen P, Remes V. Results of 3,668 primary total hip replacements for primary osteoarthritis in patients under the age of 55 years. Acta Orthop 2011;82:521–9. https://doi.org/10.3109/17453674.2011.618908.
- [15] Elbardesy H, Anazor F, Mirza M, Aly M, Maatough A. Cemented versus uncemented stems for revision total hip replacement: A systematic review and meta-analysis. World J Orthop 2023;14:630–40. <u>https://doi.org/10.5312/wjo.v14.i8.630</u>.
- [16] Wang L, Lei P, Xie J, Li K, Dai Z, Hu Y. Medium-term outcomes of cemented prostheses and cementless modular prostheses in revision total hip arthroplasty. Sci Rep. 2013;3:2796.
- [17] Lara-Taranchenko Y, Nomdedéu JF, Jr., Aliaga Martínez A, Mimendia I, Barro VM, Collado D, et al. Cemented vs cementless stems for revision arthroplasties due to Vancouver B2 periprosthetic hip fracture. Eur J Orthop Surg Traumatol. 2024.

Table 1: Baseline Characteristics of the Reviewed Articles												
Ref.	Count	Journal	Study	Cente	Number	Patient Sex	Patient Age	Follow-up				
Author	ry		Туре	rs	of stems	(M%)	(SD)	Duration				
Iorio [9], 2008	USA	The Journal of Arthropla sty	Prospecti ve	Single	Cemente d: 43, Uncemen ted: 43	Cemented: 17 (40%), Uncemented: 27 (63%)	Cemented: 67.5, Uncemented : 71.2	Cemented: 9 years, Uncemente d: 7 years				
Weiss [13], 2011	Swede n	Acta Orthopae dica	Retrospe ctive	Multip le	Cemente d: 1073, Uncemen ted: 812	Cemented: 544 (51%), Uncemented: 443 (55%)	Cemented: 76 (9), Uncemented : 72 (11)	Cemented: 4.2 years, Uncemente d: 3.4 years				
Wang [16], 2013	China	Scientific Reports	Retrospe ctive	Single	Cemente d: 28, Uncemen ted: 23	Cemented: 13 (46%), Uncemented: 16 (70%)	Cemented: 68, Uncemented : 64.3	Cemented: 6.1 years, Uncemente d: 5.5 years				
Tyson [12], 2019	Swede n	Acta Orthopae dica	Retrospe ctive	Multip le	Cemente d: 1,328, Uncemen ted: 1,668	No. Females: Cemented: 748 (56.3) Uncemented: 955 (56.6) 955	Cemented: 74 (9), Uncemented : 72 (10)	Cemented: 7.5 years, Uncemente d: 5.5 years				
Van Dooren [10], 2023	The Nether lands	Acta Orthopae dica	Retrospe ctive	Multip le	Cemente d: 555, Uncemen ted: 1324	Cemented: 144 (26%), Uncemented: 419 (32%)	Not Reported	Mean: 4.1 years				
Lara- Taranc henko [17], 2024	Spain	European Journal of Orthopae dic Surgery & Traumato logy	Retrospe ctive	Single	Cemente d: 17, Uncemen ted: 13	Cemented: 8 (26,7%), Uncemented: 4 (13.3%)	Cemented: 82.8 (6.0), Uncemented : 78.4 (8.6)	Mean: 1 year				

	Uncem	ented	Cem	ented				
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	Weight
lorio, 2008	1	43	2	43		0.50	[0.05; 5.31]	7.3%
Van Dooren, 2023	45	1324	15	555		1.26	[0.71; 2.24]	29.7%
Lara-Taranchenko, 2024	4	13	2	17		2.62	[0.56; 12.15]	13.5%
Tyson, 2019	65	1668	17	1328		3.04	[1.79; 5.17]	30.6%
Wang, 2013	1	23	0	28		- 3.64	[0.16; 85.22]	4.5%
Weiss, 2011	17	812	2	1073		11.23	[2.60; 48.48]	14.4%
Random effects model3883Prediction intervalHeterogeneity: $l^2 = 57\%$, $t^2 = 0.3560$, $p = 0.04$.04	3044		2.45	[1.20; 4.98] [0.35; 17.00]	100.0%	
rest for overall effect. 2 -	2.47 (p =	0.014)		Ce	mented Stem Uncemented	Stem		
				Ce	oncemented Stern Oncemented	otern		

Dislocation

	Uncem	ented	Cem	ented							
Study	Events	Total	Events	Total		Risk	Ratio		RR	95%	-Cl Weigh
Weiss, 2011	6	812	19	1073	_		+		0.42	[0.17; 1	.04] 11.99
Van Dooren, 2023	39	1324	34	555					0.48	[0.31; 0	75] 34.89
Tyson, 2019	49	1668	65	1328		-			0.60	[0.42; 0	.86] 52.69
Iorio, 2008	1	43	1	43					1.00	[0.06; 15	.48] 0.79
Common effect model Prediction interval		3847		2999		•	_		0.54	[0.41; 0. [0.30; 0.	71] 100.0% 97]
Heterogeneity: $I^2 = 0\%$, τ^2	= 0, p = (0.78								•	
Test for overall effect: z =	-4.49 (p <	< 0.001)		0.1	0.5	1 2	10			
				0	Cemente	ed Stem	Uncem	nented St	tem		

Aseptic Loosening

	Uncem	ented	Cem	ented					
Study	Events	Total	Events	Total	Risk Ratio	RR	95	5% -CI	Weight
Iorio, 2008	0	43	1	43		0.33	[0.01;	7.96]	2.9%
Wang, 2013	0	23	1	28		0.40	[0.02;	9.47]	2.6%
Van Dooren, 2023	46	1324	18	555		1.07	[0.63;	1.83]	48.6%
Weiss, 2011	5	812	4	1073		1.65	[0.44;	6.13]	6.6%
Tyson, 2019	38	1668	18	1328		1.68	[0.96;	2.93]	38.4%
Lara-Taranchenko, 2024	3	13	0	17		- 9.07	[0.51; 1	61.14]	0.8%
Common effect model 3883 Prediction interval			3044	<u>+</u>	1.37	[0.96; [0.81;	1.96] 2.25]	100.0%	
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.49$						-	-		
Test for overall effect: z =	= 1.75 (p =	0.081)			0.01 0.1 1 10 100)			
				C	emented Stem Uncemented S	tem			

Infection

	Uncem	ented	Cem	ented				
Study	Events	Total	Events	Total	Risk Ratio	RR	95%-CI	Weight
Weiss, 2011	2	812	7	1073		0.38	[0.08; 1.81]	11.5%
Lara-Taranchenko, 2024	0	13	1	17		0.43	[0.02; 9.79]	2.5%
Van Dooren, 2023	21	1324	20	555		0.44	[0.24; 0.81]	53.7%
Tyson, 2019	12	1668	13	1328	-	0.73	[0.34; 1.61]	27.6%
Iorio, 2008	4	43	2	43		2.00	[0.39; 10.35]	3.8%
Wang, 2013	4	23	0	28		10.91	[0.62; 192.55]	0.9%
Common effect model Prediction interval Heterogeneity: $l^2 = 36\%$, 1	² = 0.212	3883 5, p = 0	0.17	3044		0.66	[0.44; 1.00] [0.14; 3.41]	100.0%
Test for overall effect: z = -1.97 (p = 0.048))		0.01 0.1 1 10 100			
					Cemented Stem Uncemented St	tem		

Periprosthetic fractures