Does the integration of robotic technology improve outcomes in unicompartmental knee arthroplasty?

Karaytug K, Caliskan E, Abdelnasser KA, Sorial R, Kamath A.F.

Response/Recommendation: Robotic-assisted unicompartmental knee arthroplasty (R-UKA) offers several significant technological advantages, including precision and accuracy, repeatability, reliability, and real-time feedback. However, there are also studies in which conventional unicompartmental knee arthroplasty (C-UKA) was associated with shorter operative time and lower cost. Thus, the benefits of using robotics should be weighed against the added cost and longer operative time.

Level of Evidence: Moderate

Rationale:

Current studies have highlighted that the survivorship of unicompartmental knee arthroplasty (UKA) is closely linked to various intra-operative factors such as lower extremity mechanical alignment, component fixation and alignment, joint-line maintenance and soft tissue balancing. (1-3) To enhance surgical accuracy, precision, and ultimately improve survivorship rates in UKA, several robotic-assisted arthroplasty surgery systems have been developed. (4)

The studies in 14 meta-analyses have demonstrated that robotic assistance can significantly enhance the accuracy of surgery, particularly in UKA. One of the key reasons for this improvement lies in the advanced 3-dimensional (3D) visualization capabilities offered by robotic systems during the surgical procedure. (5-7) On the other hand, controversial issues such as surgery time and functional results exist. The studies did not find a statistically significant difference in KSS and WOMAC (*p-value 0.490, and 0.700 based on a z-test*) between R-UKA and C-UKA.

The low overall complication rates suggest that both R-UKA and C-UKA are generally safe procedures with low risk of adverse events. Superficial and deep infections were identified as the most prevalent complications, but the specific rates or comparative incidences between R-UKA and C-UKA were not detailed. The complication data demonstrated no significant differences in superficial and deep infection rates (OR 2.8 (95% CI 0.93 to 8.38); p = 0.070, z-test) or in early re-intervention rates (OR 2.20 (95% CI 0.79 to 6.09); p = 0.130, z- test) in the C-UKA group compared to R-UKA group in short-term follow-up.

Findings in the literature suggest that while both procedures are generally safe with low complication rates, R-UKA may offer advantages in terms of reducing complications and potentially lowering the need for revision surgeries compared to C-UKA (OR 2.18 (95% CI 1.06 to 4.49); p = 0.040, z- test). This is consistent with the data from national joint registries, which also indicate lower revision rates for R-UKA compared to C-UKA over similar timeframes. **(8-9)**

There are three current financial studies comparing the cost of R-UKA and C-UKA. Two of the studies using Markov decision analysis concluded that R-UKA is generally cost-effective compared to C-UKA, particularly in scenarios with higher case volumes and potential reductions in length of hospital stay. (10-12)

In summary, while R-UKA offers technological advancements that enhance surgical precision and reduce revision rates compared to manual techniques, it does not significantly differ in functional outcomes. As the costs associated with R-UKA approach those of C-UKA in highvolume settings, the rationale for adopting robotic technology becomes increasingly compelling, potentially offering both clinical and economic benefits in the field of knee arthroplasty.

References

1. Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) (2017) Hip, knee & shoulder arthroplasty: 2017 annual report. https://aoanjrr.sahmri.com/documents/10180/

397736/Hip%2C%20Knee%20%26%20Shoulder% 20Arthroplasty. Accessed 16 Apr 2018

2. Xu K, Li Y, Zhang H, Wang C, Xu Y, Li Z (2014) Computer navigation in total hip arthroplasty: A meta-analysis of randomized controlledtrials. IntJSurg12(5):528–533. https://doi.org/10.1016/j.ijsu.2014.02.014

3. van der List J, Chawla H, Joskowicz L, Pearle A (2016) Current state of computer navigation and robotics in unicompartmental and total knee arthroplasty: A systematic review with meta-analysis. Knee Surg Sports Traumatol Arthrosc 24(11):3482–3495. https://doi.org/10.1007/s00167-016-4305-9

4. Jacofsky D, Allen M (2016) Robotics in arthroplasty: A comprehensive review. J Arthroplast 31(10):2353–2363. https://doi.org/ 10.1016/j.arth.2016.05.026

5. Robinson PG, Clement ND, Hamilton D, Blyth MJG, Haddad FS, Patton JT: A systematic review of robotic-assisted unicompartmental knee arthroplasty: prosthesis design and type should be reported. Bone Joint J 2019, 101-b(7):838-847.

6. Zhang FJ, Li HC, Ba ZC, Bo CG, Li K: Robotic arm-assisted vs conventional

unicompartmental knee arthroplasty A meta-analysis of the effects on clinical outcomes. Medicine 2019, 98(35) 7. Gaudiani MA, Samuel LT, Kamath AF, Courtney PM, Lee GC: Robotic-Assisted versus Manual Unicompartmental Knee Arthroplasty: Contemporary Systematic Review and Meta analysis of Early Functional Outcomes. J Knee Surg 2020.

8. No authors listed. 18th Annual Report 2021 National Joint Registry. 2021. https://reports.njrcentre.org.uk/Portals/0/PDFdownloads/NJR%2018th%20Annual% 20Report%202021.pdf (date last accessed 10 March 2022).

9. No authors listed. The New Zealand Joint Registry 22- year Report January 1999 to December 2020 New Zealand Joint Registry. 2021. https://www.nzoa.org.nz/ sites/default/files/NZJR_22_Year_Report_Final.pdf (date last accessed 10 March 2022).

10. Clement ND, Deehan DJ, Patton JT. Robot- assisted unicompartmental knee arthroplasty for patients with isolated medial compartment osteoarthritis is cost- effective: a Markov decision analysis. Bone Joint J. 2019;101- B(9):1063–1070

11. Moschetti WE, Konopka JF, Rubash HE, Genuario JW. Can robot- assisted unicompartmental knee arthroplasty be cost- effective? A Markov decision analysis. J Arthroplasty. 2016;31(4):759–765.

12. Cool CL, Needham KA, Khlopas A, Mont MA. Revision analysis of robotic arm- assisted and manual unicompartmental knee arthroplasty. J Arthroplasty. 2019;34(5):926–931.